Einstellungstest LOGIK - Zahlenreihen lösen, Logisches Denken trainieren

Поделиться
HTML-код
  • Опубликовано: 22 дек 2024

Комментарии • 180

  • @MathemaTrick
    @MathemaTrick  Год назад +11

    Falls ihr mich und meinen Kanal ein wenig unterstützen möchtet, schaut doch mal bei meiner Kanalmitgliedschaft vorbei! ruclips.net/user/mathematrickjoin
    Ich danke euch von ganzem Herzen für euren Support!
    _____________________________________
    Meine Wunschliste: mathematrick.de/wunschzettel

  • @WilliamRodrigues-u1l
    @WilliamRodrigues-u1l 26 дней назад +6

    Total geil im Assessment unter Zeitdruck drüber nach zu denken

  • @wolfwall8228
    @wolfwall8228 Год назад +14

    Hat mir gut gefallen, wie Du Lösungsstrategien in diesen Fällen aufgezeigt hast 🙏💐

  • @Rollkragenpullover
    @Rollkragenpullover Год назад +16

    Total spannend! Interessant fand ich auch, daß Du auch mal von einem Holzweg zurückkehren mußtest, was ja auch nicht schlimm ist, wenn man nicht unter Zeitdruck steht. Bin natürlich froh, daß die Zeiten mit Einstellungsgesprächen hinter mir liegen (daher auch immer noch ß statt ss in meinem Text). Allen, die sie noch vor sich haben, wünsche ich für diese Aufgaben den richtigen Durchblick! 👍👏😊🎶

  • @profihandwerker4828
    @profihandwerker4828 Год назад +24

    Du könntest auch Schauspielerin werden oder auch Synchronsprecherin. Das Talent hast du dazu allemal! 💝👍

    • @KadaverKurt
      @KadaverKurt Год назад +1

      Ja, Pornodarstellerin! Ich würde mir deine Filme anschauen!

    • @mirvessen
      @mirvessen Год назад +6

      Sie ist doch auch Sängerin 😅

  • @Goegiminator
    @Goegiminator Год назад +10

    Also ich hab die 3. So gerechnet, dass ich immer die Differenz der folgenden Zahlen mit 4 multiplizierte.
    Also
    (9-5)×4=16
    (16-9)×4=28
    (28-16)×4=48
    (48-28)×4=80
    (80-48)×4=128
    Btw. finde deine Videos echt super. Sehe ich mir sehr gerne an. Lg

  • @madmaxx9897
    @madmaxx9897 Год назад +4

    Ich war nie gut in Mathe aber Du erklärst echt gut!

  • @KanalmitNivea
    @KanalmitNivea Год назад +1

    Absolut faszinierend. Hatte nie ein Schema um solche Aufgaben zu lösen und bin bei sowas immer gescheitert. Nachdem ich gesehen habe wie du bei der 1. Aufgabe vorgegangen bist, konnte ich die beiden weiteren selbstständig lösen. Am Ende des Tages funktioniert Mustererkennung wohl nur wenn man genügend Muster kennt. Vielen Dank für dieses und auch deine anderen Videos! Dein Kanal hat wesentlich dazu beigetragen, dass ich mittlerweile eine vorher nicht vorstellbare Begeisterung für Mathe entwickelt habe. Du bist eine grandiose Lehrerin! Bitte weiter so :)

  • @krekmanu
    @krekmanu Год назад +1

    Danke!

  • @renekoelzer2328
    @renekoelzer2328 Год назад +2

    Hallo Susanne, vielen Dank für das lehrreiche Video. Ist spannend zu lösen. Freundliche Grüße!

    • @MathemaTrick
      @MathemaTrick  Год назад +1

      Dankeschön René! 🥰 Wünsche dir nen tollen Tag :)

  • @ede320d3
    @ede320d3 Год назад +1

    Folge 1 und 2 hab ich gestemmt mit einiger Zeit. Folge 3…lost…Danke für die tolle einfache Erklärung. Schade dass du nicht an einer Schule oder Uni bist in der Lehre. Aber du lehrst hier. Und das sehr gut. 🙏 danke für deinen Content

  • @thorben7609
    @thorben7609 Год назад +1

    Das ist so entspannend und ja es beruhigt mich richtig wenn ich Deine Videos schaue… meist in der Mittagspause.
    Leider ist die Schule lange vorbei aber eine Lehrerin wie Dich wäre ein Traum gewesen, da macht das lernen Spaß. Man fühlt sich motiviert und mitgenommen… Danke!

    • @k.grillmayer606
      @k.grillmayer606 Год назад +1

      Ja, auch ich hätte mir so eine Lehrerin gewünscht

  • @opahorst162
    @opahorst162 Год назад +1

    Schöne Beispiele. Haben mir gut gefallen. Danke!

  • @andreeba8887
    @andreeba8887 Год назад +1

    Tolle Erklärung ! Schaue deine Rätsel gerne. Hier hat es mich bei der dritten Ausgabe kalt erwischt, die ersten beiden habe ich genauso gelöst wie du.

  • @maxpiderit1829
    @maxpiderit1829 Год назад +1

    Du bist die beste. Das weist du schon.

  • @martinesurk4047
    @martinesurk4047 Год назад

    Mega Mittagspausen Rätsel 👍
    Dankeschön 🤘

  • @Birol731
    @Birol731 Год назад +2

    Herzlichen Dank für dieses kleine Gehirnjogging 🙏

  • @profihandwerker4828
    @profihandwerker4828 Год назад

    ich komme ganz gut zurecht, ich höre dir einfach zu und bin dabei ganz entspannt. 😂

  • @deiwl
    @deiwl Год назад +2

    Sehr schön und anschaulich 😃👍

  • @markusnoller275
    @markusnoller275 Год назад +2

    Hallo Susanne, guten Morgen,
    zu 1) multipliziere jeweils mit der nächstfolgenden Primzahl
    1 -> 2 * 2
    2 -> 6 * 3
    6 -> 30 * 5
    30 -> 210 * 7
    210 -> 2310 *11
    zu 2) Die Summe von 2 aufeinanderfolgenden Zahlen, ergibt die nachfolgende Zahl
    5+8 =13
    8+13=21
    13+21=34
    21+34=55
    34+55=89
    zu 3) Zahl verdoppeln und 2er-Potenzen abziehen
    5 -> 9 5 verdoppeln 10 -2^0
    9 ->16 9 verdoppeln 18 -2^1
    16 -> 28 16 verdoppeln 32-2^2
    28->48 28 verdoppeln 56-2^3
    48->80 48 verdoppeln 96-2^4
    80->128 80 verdoppeln 160-2^5
    Dir, Thomas und allen anderen hier ein super Wochenende.
    LG aus dem Schwabenland.

  • @kore399
    @kore399 Год назад

    Vielen Dank für die super Videos.
    immer eindeutig erklärt,echt top.
    hätte ich so eine Mathelehrerin gehabt wäre es mir noch leichter gefallen und es wäre bestimmt auch die 1 auf dem Zeugnis gelandet.

  • @lpju1220
    @lpju1220 Год назад +17

    Man hätte beim 2.Beispiel vielleicht dazu sagen können, dass es sich um die Fibbonaci-Folge handelt, zwar nicht beginnend bei 1 aber trotzdem wäre es gut zu erwähnen

  • @AJankeBuchAltersvorsorgemitETF

    Über die Tricks der Mentalisten gerne mehr!

  • @manfredwitzany2233
    @manfredwitzany2233 Год назад +24

    Ich bin zu anderen Lösungen gekommen. Alle drei Folgen gehen mit 42 weiter.
    Wie man leicht erkennen kann, werden die Folgen durch folgende Polynome generiert:
    1. 864 - (19533 x)/10 + (9487 x^2)/6 - (4675 x^3)/8 + (599 x^4)/6 - (253 x^5)/40
    2. -42 + (2249 x)/20 - (36827 x^2)/360 + (1121 x^3)/24 - (401 x^4)/36 + (161 x^5)/120 - (23 x^6)/360
    3. 105 - (10879 x)/60 + (497 x^2)/5 - (853 x^3)/48 - (41 x^4)/48 + (47 x^5)/80 - (11 x^6)/240

    • @Gandolfmerlin1
      @Gandolfmerlin1 Год назад +1

      Geil 😂😂

    • @thepinback
      @thepinback Год назад +4

      42 ist immer richtig! 😂Erklärung siehe hier ruclips.net/video/g_id5N2yrlM/видео.html

    • @soerenhuba
      @soerenhuba Год назад

      Sehr schön. Hab gut gelacht eben.

    • @christahamm-naacke5801
      @christahamm-naacke5801 Год назад

      Da kann‘s aber einer sehrgut nicht erklären

    • @andreaswalter8514
      @andreaswalter8514 Год назад +2

      Fand's auch sehr lustig, dass jetzt gerade "zufällig" so ein Video kommt, nachdem Prof. Weitz vor ein paar Tagen ...
      Die Polynomlösung finde ich deutlich besser als das Erraten der Gedanken des Erstellers der Folge.

  • @fanfurie6381
    @fanfurie6381 Год назад +11

    Ich hab das bei der letzten anders gerechnet. Erst +4, dann +7, +12, +20, +32. das ist erst ein Anstieg von 4 zur 7 von 3,dann von der 7 zur 12 von 5, dann von 8 und dann von 12. da erhöht sich der Anstieg wiederum immer um eins. Also erst +2, dann +3, +4, also muss der nächste 5 sein. Also um auf die nächste Zahl zu kommen, muss man zu der vorherigen +12 noch +5 rechnen. Also muss die 32 um die Zahl 17 ansteigen. 80+49 dann 129.

  • @dodomein
    @dodomein Год назад +4

    Prima Lösungsstrategien. Das Problem ist nur, dass diese Test oft mit Zeitdruck sind und man quasi auf den ersten Blick erkennen soll, was die Lösung ist. Es ist normalerweise gar keine Zeit, die Differenzen dazu zu schreiben und verschiedene Varianten auszuprobieren,

  • @KS-rh3qq
    @KS-rh3qq Год назад +2

    Hallo, Beim 2. Beispiel gilt vereinfacht: Die Summe zwei benachbarte Zahlen ergibt die nächste Zahl . Oder?

    • @dbgTube
      @dbgTube Год назад

      Hatte ich mir auch so gedacht

    • @pinkeHelga
      @pinkeHelga Год назад +4

      Oder kurz gesagt: Fibonacci ;-)

    • @KS-rh3qq
      @KS-rh3qq Год назад

      @@pinkeHelga So weit habe ich gar nicht gedacht.😅

  • @BiesenbachKlein
    @BiesenbachKlein Год назад

    Cool. Hat Spaß gemacht. 👍💐

  • @krist.7419
    @krist.7419 Год назад

    super, hab immer alles richtig!!!😁

  • @rolandmengedoth2191
    @rolandmengedoth2191 Год назад +1

    Wenn man sowas allerdings unter Testbedingungen machen soll, dann sieht die Welt ganz anders aus. Da herrscht Zeitdruck und ggf Aufgeregtheit etc. Wenn man das dann immer noch so cool angeht dann Chapeau.

  • @WernerSchnitzer-vb9ti
    @WernerSchnitzer-vb9ti Год назад +2

    Wäre gerade noch toll, wenn es zu den gefundenen Werten auch noch eine Übung gäbe, wie man daraus auf die entsprechenden Formeln kommt ...

  • @bboyandi82
    @bboyandi82 Год назад

    Juhu hab's allein geschafft 😂 Danke fürs Video

  • @klauswagner1776
    @klauswagner1776 Год назад +2

    Hallo Susanne,
    wieder mal eine witzig vorgetragene Aufgabenart, die mir immer wieder Kopfzerbrechen macht. Eine kleine "Hausaufgabe" wäre vielleicht geschickt.
    Zum Thema Einstellungstest
    Wenn man gefragt wird, wann man das letzte mal Rauschmittel zu sich genommen hat: Auf keine Fall auf die Uhr sehen!
    Viele Grüße und schönes Wochenende
    Klaus

  • @thankyouforyourcompliance7386
    @thankyouforyourcompliance7386 Год назад +6

    3te Aufgabe: alternative Lösung 129: rechenweg erste Differenzen 4 7 12 20 32 49. Differenz dieser Differenzen 3 5 8 12.
    Differenz der Differenzen der Differenzen: 2 3 4. Fortsetzung dann unterste Ebene 5, darüber 17, darüber 49, Endergebnis 129. Natürlich ist die Folge 2 3 4 nicht so eindeutig wie eine Folge wie hier beschrieben, aber immerhin.

    • @joymaster2006
      @joymaster2006 Год назад

      Könntest du dass etwas DIFFERENZIERTER erklären? Mein Gehirn hat sich gerade von der Aufgabe differenziert. 🙂

    • @Kerstin-n9u
      @Kerstin-n9u Месяц назад

      @@thankyouforyourcompliance7386
      Genauso hab ich die dritte Reihe auch gelöst

  • @KaZZpah
    @KaZZpah Год назад

    Wo warst du als ich damals im Mathe Unterricht verzweifelt bin 😢😂😂😂 ich finde deine Videos super ❤😊. Total super und simpel erklärt und dargestellt 👍🏻.
    Ich hab Mathe damals gehasst weil vieles nie konkret erklärt bzw. vereinfacht mal dargestellt wurde. Wenn man was nicht gleich verstanden hat, ist man mehr oder weniger auf der Strecke geblieben da meisst dann wieder das nächste Thema dran kam…

  • @pit8893
    @pit8893 Год назад

    Toll, hat "Sucht"- Potenzial. .....😉

  • @javadaliloo6112
    @javadaliloo6112 Год назад

    danke,because of content which you have created.

  • @wolframfritz5174
    @wolframfritz5174 Год назад +2

    Hallo Susanne, Danke für den Einstieg zu den Zahlenfolgen auch wenn vielleicht schon bekannte dabei sind. Mir fehlte immer ein bisschen das Erkennen von Folgen, ein Einzelschicksal (?) Und vielleicht wäre ja eine andere Folge ergänzenswert : S M D M D F
    Die Lösung ist S (wie Samstag) : - )
    schönes Wochenende

  • @WernerSchnitzer-vb9ti
    @WernerSchnitzer-vb9ti Год назад +2

    Hi, meiner Einschätzung nach ist die zweite Zahlenreihe = der Fibonacci-Zahlen, ohne 1,2 und 3

  • @christiand.2290
    @christiand.2290 Год назад +2

    Bei der 3ten Reihe, dachte ich mir, nach dem du die Abstände hingeschrieben hast, dass der Abstand mal 4 immer die nächste Zahl ist. Am Ende gibt das auch 128. Ich fühle da einen Zusammenhang.

    • @pinkeHelga
      @pinkeHelga Год назад +3

      Den Zusammenhang gibt es.
      Sei x1 eine beliebige Zahl in der Reihe, dann sei x2 der Nachfolger von x1 und x3 der Nachfolger von x2. Die Anweisung lautet verdoppeln und eine Zahl n subtrahieren, wobei sich n mit jedem Schritt verdoppelt. (Nicht ganz sauber formuliert, aber klingt für Normalsterbliche halbwegs verständlich.)
      Susanne:
      x2 = x1 * 2 - n
      x3 = x2 * 2 - 2n
      zu zeigen:
      x3 = (x2-x1) * 4
      2*x2 = x1 * 4 - 2n
      x3 = x2 * 2 - 2n
      2n = x1 * 4 - 2*x2
      2n = x2 * 2 - x3
      nach 2n gleichsetzen:
      x1 * 4 - 2*x2 = x2 * 2 - x3
      x3 = x2 * 2 - x1 * 4 + 2*x2
      x3 = 4 * x2 - x1 * 4
      x3 = (x2-x1) * 4 q.e.d.
      Eure beiden Lösungen sind also äquivalent.

    • @christiand.2290
      @christiand.2290 Год назад

      ​@@pinkeHelga 👍sehr gut, das ist der Beweis, dass mit meinen Gefühlen noch alles in Ordnung ist. 🥳🥳🥳

    • @unknownidentity2846
      @unknownidentity2846 Год назад +1

      Man kann die Glieder der letzten Folge wie folgt berechnen:
      f(0) = 5
      f(n+1) = 2*f(n) − 2^n
      (Beispiel: f(1) = 2*f(0) − 2^0 = 2*5 − 1 = 9)
      Deine Vermutung lautet nun in mathematischer Schreibweise: f(n+1) = 4*(f(n) − f(n−1)). Dann schauen wir mal:
      f(n+1) = 4*(f(n) − f(n−1))
      = 4*(2*f(n−1) − 2^(n−1) − f(n−1))
      = 4*(f(n−1) − 2^(n−1))
      = 2*(2*f(n−1) − 2*2^(n−1))
      = 2*(2*f(n−1) − 2^(n−1) − 2^(n−1))
      = 2*(f(n) − 2^(n−1))
      = 2*f(n) − 2*2^(n−1)
      = 2*f(n) − 2^n
      Man sieht: Die Ausdrücke f(n+1) = 2*f(n) − 2^n und f(n+1) = 4*(f(n) − f(n−1)) sind absolut gleichwertig.

  • @patrickd.7354
    @patrickd.7354 Год назад +5

    Beim letzten Beispiel habe ich immer den Abstand der beiden Vorgänger mit 4 multipliziert.
    80-48=32 *4=128

  • @luttkamp4431
    @luttkamp4431 Год назад +2

    Die erste und letzte Zahlenreihe kann man auch anders lösen. Da käme dann 1. 791 und 3. 129 bei raus. Trotzdem nette Knobelei! Dankeschön🤝

  • @foamheart
    @foamheart Год назад +14

    Bei der dritten Reihe bin ich auf 129 gekommen. 😀 Ich habe dreimal hintereinander eine Differenzreihe gebildet und bin dann bei 2, 3, 4 gelandet. Klar, dass dann als nächstes 5 kommt, oder? ;-) Offensichtlich gibt es bei solchen Reihen nicht immer die eine richtige Lösung.

    • @frankkoch509
      @frankkoch509 Год назад +2

      Auf die Lösung bin ich auch gekommen!

    • @jeffeinfach
      @jeffeinfach Год назад +1

      Ich verstehe deine Lösung nicht. 129-80=49... 49-48=1 und nicht 5. Es müsste dann deiner Reihe nach 133 sein oder?
      Außerdem: 48-28=20... 20-16=4
      80-48=32... 32-28=4. Also haben wir doch keine steigende Differenz.
      Hab ich was falsch verstanden?

    • @bjornfeuerbacher5514
      @bjornfeuerbacher5514 Год назад +2

      Zu jeder solchen Reihe kann man unendlich viele Lösungen finden.

    • @lamprete
      @lamprete Год назад +2

      ​@@jeffeinfach etwa so:
      5 : 9 : 16 : 28 : 48 : 80 : 129
      4 : 7 : 12 : 20 : 32 : 49
      3 : 5 : 8 : 12 : 17
      2 : 3 : 4 : 5

    • @foamheart
      @foamheart Год назад

      @@jeffeinfach Die erste Differenzreihe ist 4, 7, 12, 20, 32, (49). Die zweite Differenzreihe ist 3, 5, 8, 12, (17). Die dritte Differenzreihe ist 2, 3, 4, (5).

  • @Juarqua
    @Juarqua Год назад +1

    Ich bin mal auf eine Reihe gestoßen, bei der keines dieser Vorgehen funktionierte. Des Rätsels Lösung war, dass diese Reihe quasi aus zwei Reihen zusammengesetzt war, sodass die ungeraden Glieder eine andere Struktur und Berechnungsvorschrift als die geraden Glieder hatten. Erst wenn man beide erknannt hatte, konnte man die Reihe wie gefordert um zwei Glieder logisch fortsetzen.

  • @BlinkCurios
    @BlinkCurios Год назад +1

    5:58 , ich hätte da irgendwie einen Zusammenhang. Zu der +3 addiert man 2 um auf +5 zu kommen, zu der +5 addiert man 3 um auf die +8 zu kommen, zu der 8 dann +4 um auf 12, dann zu der 12 5 addiert und somit auf +17 gekommen. 32 +17 sind 49 und somit wäre meine Zahl 129.

    • @man_ray_1
      @man_ray_1 Год назад

      War auch meine Vorgehensweise, aber Du hast 12+5=19 gerechnet, ist aber 17, und die letzte Zahl somit 129.

    • @BlinkCurios
      @BlinkCurios Год назад

      @@man_ray_1 ups, peinlich, danke 😅

    • @namsawam
      @namsawam Год назад

      Weiter oben noch einmal:
      {Grund Los} vor 17 Stunden
      129 ist auch eine Lösung:
      5 9 16 28 48 80 129
      4 7 12 20 32 49
      3 5 8 12 17
      2 3 4 5
      +1 +1 +1
      und dazu noch ein Kommentar von mir:
      ... und es ist die schnellere, einfachere Lösung: ... ab 05:56 einfach weitermachen!

  • @kyoriyasanagi
    @kyoriyasanagi Год назад

    Bei Minute 5:57 hätte ich darunter weiter geführt.
    Von +3 auf +5 = +2
    Von +5 auf +8 = +3
    von +8 auf +12 = +4
    also könnte man sagen als nächstes käme +12 + 5 = +17 (Weil von +12 auf +17 = +5)
    also wäre das nächste dann +32 + 17 = +49
    Dann käme ich aber bei 129 und nicht 128.
    Aber diese Reihenfolge wäre doch auch logisch, oder?

  • @mandoline666
    @mandoline666 Год назад

    Danke

  • @mcrap9828
    @mcrap9828 8 месяцев назад

    Das ist doch krank 😁

  • @wolfgangkluge4684
    @wolfgangkluge4684 Год назад

    Moin Susanne, letzte Zahlenreihe leuchtet dein Ergebnis ein. Kann es eine zweite Lösung geben?
    4,7,12,20,32...
    3,5,8,12...
    2,3,4,5, ergibt 12+5=17 32+17=49
    Oder habe ich da einen Denkfehler???

  • @Ratzfaz
    @Ratzfaz Год назад +1

    5:56 Jetzt noch mal eine Ebene runter und man ist bei +2 +3 +4 (+5) Was dann ein Ergebnis von 129 währe.

    • @man_ray_1
      @man_ray_1 Год назад

      War auch mein Gedanke, allerdings hätte ich "währe" ohne h geschrieben, da es sich um die Konjunktiv-2-Form von sein handelt.🙂

  • @K.A.G222
    @K.A.G222 Год назад +1

    Hey, ich brauche deine Hilfe!
    Du hilfst mir bereits seit Jahren mit deinen Videos, im Abi und jetzt auch im Studium... Ich habe eine anstehende Mathe Prüfung und verstehe die Restgliedabschätzung beim Taylorpolynom nicht. Du hast bereits ein Video zum Taylorpolynom, aber eben ohne Restgliedabschätzung. Du würdest vielen von uns sehr damit helfen!
    Ich wäre Dir sehr dankbar, wenn du es die Tage machen würdest... Hab vielen Dank, bin ein großer Fan und habe meine Begeisterung für Mathe durch dich entdeckt😅

  • @wilmafeuerstein9028
    @wilmafeuerstein9028 Год назад +3

    Bei der zweiten Reihe war es dann eigentlich einfacher, nämlich die letzten beiden Zahlen der eigentlichen Reihe addiert führten auch zum Ziel.

  • @alexkissing3274
    @alexkissing3274 15 дней назад

    Zur ersten Zahlenfolge:
    Hier erkennen wir ein Muster: Um von 1 auf 2 zu kommen, multiplizieren wir mit 2. Um von 2 auf 6 zu kommen, multiplizieren wir mit 3. Um von 6 auf 30 zu kommen, multiplizieren wir mit 5. Um von 30 auf 210 zu kommen, multiplizieren wir mit 7. Wir multiplizieren jeweils mit der nächsten ungeraden Zahl. Die nächste Zahl erhalten wir, indem wir 210 mit 9 multiplizieren. 1, 2, 6, 30, 210, 1890, ...

  • @ossital1808
    @ossital1808 Год назад

    danke

  • @daspebbels6583
    @daspebbels6583 Год назад +1

    Viel zu kompliziert! Eifach die vorherige Zahl dazu!

  • @daswiesel1653
    @daswiesel1653 Год назад

    Bei der letzten Reihe kann man auch einfach die Zahl von der nächstkommenden abziehen und mal 4. sprich (9-5)*4 =16 (16-9)*4 = 28 usw..........(80-48)*4= 128

  • @Rul12
    @Rul12 Год назад +23

    Was bringt eigentlich sowas im echten Leben? Also in der Praxis

    • @leasophieauinger5451
      @leasophieauinger5451 4 месяца назад +1

      @@Rul12 Hilft zusammenhänge zu erkennen- aba i get u- finds auch doof😭

    • @AliBinyusuf-n4f
      @AliBinyusuf-n4f 2 месяца назад

      Das zweite Beispiel, die Fibonacci Reihe, findet man auch in der Natur. Z.B. in der Anordnung der Kerne bei einer Sonnenblume.

    • @brkyvrlk4168
      @brkyvrlk4168 14 дней назад

      bringt nix. Ganz einfach

    • @jakobk9895
      @jakobk9895 11 дней назад

      😂absolut nix

  • @SPIRITEN25559
    @SPIRITEN25559 Год назад

    Easy, schon an den erszen 3 Zahlen erkannt

  • @kingsonicxx
    @kingsonicxx Год назад +3

    Bei der letzten reihe habe ich auch was gesehen... Bei den +3/+5/+8/+12 erhöht sich die zahl jeweils um +1, also 3+2=5+3=8+4=12... Und da würde als nächstes dann +17 kommen, also 32+17=49. Und 80+49 ist 129
    Wäre an und für sich auch eine herangehensweise, woran man sieht, das nicht immer eine lösung die richtige ist 😅

    • @bjornfeuerbacher5514
      @bjornfeuerbacher5514 Год назад +2

      Zu jeder solchen Aufgabe gibt es immer unendlich viele Lösungen.

    • @namsawam
      @namsawam Год назад

      @@bjornfeuerbacher5514 Korrekt. Aber nur eine günstigste! Diese 129 ist die günstigste.

    • @bjornfeuerbacher5514
      @bjornfeuerbacher5514 Год назад

      @@namsawam Was meinst du mit "günstig"?

    • @namsawam
      @namsawam Год назад

      @@bjornfeuerbacher5514 Kostengünstigste natürlich: Am einfachsten und schnellsten.
      Früher hat man so etwas auch manchmal 'eleganter' genannt.

  • @lpju1220
    @lpju1220 Год назад +2

    Ein Dozent hat mal gesagt, dass bei Zahlenfolgen mehrere Möglichkeiten Vorhanden sind, falls man es logisch Begründen kann. Die Fortsetzung der Zahlenfolgen ist somit nicht eindeutig, da mehr Lösungen vorhanden sind

  • @stefanpierick7684
    @stefanpierick7684 Год назад +1

    Erkennst du folgende Reihe?
    1; 2; 5; 10; 21; 42; 85; 170; 341

  • @valentino1000
    @valentino1000 Год назад

    4:11 (Aufgabe 2) Warum so kompliziert? Schon die zweite Reihe ähnelt der ersten. Einfach immer die Vorgängerzahl addieren.
    Aber schönes Rätsel.

  • @walter_kunz
    @walter_kunz Год назад +2

    1) 42
    Ist ja ganz klar gegeben durch das Polynom
    -(253 x^5)/40 + (599 x^4)/6 - (4675 x^3)/8 + (9487 x^2)/6 - (19533 x)/10 + 864
    definiert
    2) 42
    Ist ja ganz klar gegeben durch das Polynom
    -(23 x^6)/360 + (161 x^5)/120 - (401 x^4)/36 + (1121 x^3)/24 - (36827 x^2)/360 + (2249 x)/20 - 42
    definiert
    3) 42
    Ist ja ganz klar gegeben durch das Polynom
    -(29 x^6)/240 + (203 x^5)/80 - (1013 x^4)/48 + (4259 x^3)/48 - (7811 x^2)/40 + (6427 x)/30 - 84
    definiert
    😇

  • @nicecraft7122
    @nicecraft7122 Год назад

    Bei der 3. Aufgabe komme ich auf 129? Ich komme auf ein passendes Muster.
    5,9,16, 28, 48, 80, 129
    +4 +7 +12 +20 +32 +49
    +3 +5 +8 +12 +17
    +2 +3 +4 +5

  • @k13r4
    @k13r4 Год назад

    Ich verstehe bei den Eignungstests nicht, wenn man eine Zahlenreihenfolge fortsetzen muss und es vier Antwortmöglichkeiten auszuwählen gibt, und man tatsächlich auf eine der Ergebnisse kommt, die zur Auswahl stehen, dass es trotzdem falsch ist? Ich hatte eben eine Aufgabe, wo die Antwort korrekt war, aber laut Lösung war keine der genannten Antworten richtig:
    1 7 15 90 630 622 3.732
    a) 26.487 26.143
    b) 26.068 26.060
    c) 26.124 26.132
    d) 27.456 27.423
    e) Keine Antwort ist richtig.
    Kann das jemand irgendwie logisch erklären?
    Ich hatte halt
    *7, 8, *6, *7, -8, *6, *7, -6
    und somit dachte ich die c) wäre richtig..

  • @jugrajghuman3511
    @jugrajghuman3511 Год назад

    Wie ist 2 ein Primzahl?

  • @popogast
    @popogast Год назад +1

    Sehr schwieriges Thema. Insbesondere, wenn eine Einstellung davon abhängen kann. Auch in Intelligenztests.
    Was ist, wenn der Proband vielleicht nicht die den meisten Personen naheliegende Fortsetzung der Zahlenfolge erkennt? Aber dennoch die gewählte Zahl logisch begründen kann? Üblicherweise
    erhält ein Proband keine Gelegenheit, sich mündlich zu rechtfertigen.
    Der YT-Kanal Weitz / HAW Hamburg hatte genau zu diesem Thema neulich ein Video hochgeladen. Link folgt in meiner Antwort auf meinen Kommentar.

    • @popogast
      @popogast Год назад

      ruclips.net/video/g_id5N2yrlM/видео.html

  • @philosopherofnewtime8859
    @philosopherofnewtime8859 Год назад +2

    Ich habe gleich bei der zweiten erkannt dass es sich um die fibonacci Reihe handelt

  • @marrykurie48
    @marrykurie48 Год назад +1

    Am schwierigsten sind Reihen, wenn mehrere Lösungen möglich sind. Auch das kommt vor.

  • @maryschumann3920
    @maryschumann3920 Год назад

    warum bei der erste Aufgabe nicht *9?

    • @volkerpohls380
      @volkerpohls380 Год назад

      Man könnte denken, dass mit der nächsten ungeraden Zahl malgenommen werden muss. Doch das ist falsch. Die erste Zahl ist ja nicht mit einer ungeraden Zahl multipliziert worden, sondern mit 2. Wenn man sich die Faktoren nacheinander ansieht, merkt man: Das sind die Primzahlen! Und 9 ist keine Primzahl, sondern erst wieder die 11.

    • @danigeschwindelt1795
      @danigeschwindelt1795 8 месяцев назад

      Ist legitim so weiterzufahren, denn eine Folge kann am Anfang eine endliche Anzahl von beliebigen Folgeglieder haben und dann in etwas übergehen , wo man ein Bildungsgesetz angeben kann. Sogar dazu gibt es ein Polynom, welches durch all diese "Punkte" geht.
      Beispiel
      a_0=1;a_1=0;a_2=1;a_3=42;
      a_k=k^2 für k>3
      Also geht es ab k=4 mit
      a_4=16;a_5=32;...
      Nota bene so rum ist's eindeutig, da das Bildungsgesetz vor der Aufzählung angegeben ist.
      Man kann aber nie aus der ... Schreibweise auf ein eindeutig gegebenes Bildungsgesetz schliessen.
      Wer sagt denn, dass es nicht einfach wieder von vorne beginnt oder mit irgendetwas sonst, wie eben mit 42. Auch beliebige Differenzfolgen von Differenzfolgen kann man bilden, bis eine einzige Zahl übrig bleibt und auf die kann wieder etwas beliebiges anwenden:mit der gleichen Zahl weiterfahren, pi dazu zählen mit e multiplizieren, was man will. Danach kann man alles wieder rückwärts rechnen und hat damit gleich die Begründung wie man die nächste Zahl gefunden hat. Natürlich wird man sich das Leben einfach machen und eher eine Grundoperation, also +,-,*,÷ und etwas aus den natürlichen Zahlen wählen.

  • @tombackes1278
    @tombackes1278 Год назад

    Spannend, ich habe für die letzte Folge ein anderes Muster, mit gleichem Ergebnis: die folgende Zahl ist immer die Differenz der beiden vorherigen Zahlen, multipliziert mit 4. Die Differenz zwischen 5 und 9 ist 4, und 4 multipliziert mit 4 ist 16. Mit der nächsten Differenz (16-9=7) erhalte ich das nächste Glied (4*7=28). Die neue Differenz zwischen 16 und 28 ist 12. Multipliziere ich jetzt diese Differenz wieder mit 4, erhalte ich 12*4=48. Auch für das nächste Reihenglied gilt 4*(48-28)=80. Dementsprechend ist auch bei mir das gesuchte Reihenglied 4*(80-48)=128. Gibt es für diesen Zusammenhang einen mathematischen Beweis und wenn ja, könntest du den vielleicht mal vorstellen?
    Viele Grüße!

  • @sameer4s148
    @sameer4s148 Год назад

    hey liebe susanna ich hab einstellung test muss bis 08.08.2023 absolvieren kannst du bitte mir helfen bitte du ,genau geleich test wie deine video .hast gute erfahrung, ich frue mich für ihre feedback. danke

  • @utedalheimer1742
    @utedalheimer1742 Год назад

    ❤️❤️

  • @WRJohnMcClane-mm9pp
    @WRJohnMcClane-mm9pp 9 месяцев назад

    ich habe eine Zahlenreihe wo ich die Lösung habe aber nicht die Logik habe 3 4 7 12 19 = 32 vieleicht möchte mir jemand helfen.? Danke

  • @jimistorm
    @jimistorm Год назад +1

    Wenn ich Weitz richtig verstanden habe wäre die Antwort 42 (oder jede andere Zahl) auch richtig gewesen; aus dem Video „Wie man JEDEN Intelligenztest besteht: Das Geheimnis der Zahl 42“

  • @joymaster2006
    @joymaster2006 Год назад

    2,Aufgabe.... Stichwort FIBUNACCI - Reihe

  • @Finn-ie5sp
    @Finn-ie5sp Год назад

    Bei der zweiten folge gibt es auch eine mögliche Rechnung um als nächstes logisches Glied 88 zu haben

  • @moep0rable
    @moep0rable Год назад

    Wenn man bei Aufgabe drei die Differenzen der Differenzen der Differenzen ausrechnet kommt man auf 2, 3 und 4 würde man die Reihe mit 5 fortsetzen käme man auf 129.

  • @ferdirunge4510
    @ferdirunge4510 Год назад

    "so fernsehzeug" haha geil ;>

  • @stephanwenzinger2865
    @stephanwenzinger2865 Год назад

    Niiiiiiiiiiiiie im Leben käme ich auf die Lösungen xD Damn Mathe ist echt interessant, nur ich bin ein Ochse darin hehe

  • @stephankuehne2651
    @stephankuehne2651 Год назад

    Zu diesen Zahlenreihen, vielleicht auch mit für den einen oder anderen überraschenden Ergebnis, dass Video von Prof. Dr. Edmund Weitz aus Hamburg. ruclips.net/video/g_id5N2yrlM/видео.html

  • @Nikioko
    @Nikioko Год назад +1

    Wenn ich ein Polynom 7. Grades nehme, kann es mit jeder beliebigen Zahl weitergehen.
    Aber ansonsten würde ich sagen:
    1) 1, 2, 6, 30, 210, 2310, 30030, ...
    Regel: Produkt der ersten n Primzahlen (plus 1)
    2) 5, 8, 13, 21, 34, 55, 89, 144, ...
    Regel: Fibonacci-Folge ab n = 5.
    3) 5, 9, 16, 28, 48, 80, 128, 192, ...
    Regel: Verdoppeln und 2^n abziehen.

  • @hajomann1686
    @hajomann1686 Год назад +3

    Das Ergebnis für alle diese Aufgaben lautet „42“, wahlweise jede andere Zahl.😮
    Siehe hierzu das höchst amüsante Video von Prof. WEITZ der HAW Hamburg😅

    • @popogast
      @popogast Год назад

      Bin erfreut, dass Du das Video auch kennst.

  • @nsn313
    @nsn313 Год назад

    Letzte : 4*4 16 4*7 28 4*12 48 4*20 80 4*32 128
    Vorletzte: (5+8) 13 (8+13) 21 (13+21) 34 (21+34) 55 (34+55) 89

  • @kairilikesyou
    @kairilikesyou Год назад

    Mir ist beim 2. aufgefallen, das es die 5 am anfang gibt, und die 5 aber auch addiert wurde, und das selbe mit der 8, sie steht auch oben in blau UND in rot als +8. D.h. da die 34 in blau steht, kommt man auch auf +34 in rot drauf😅

  • @handschich7736
    @handschich7736 Год назад +2

    42

  • @chjomochjomo5756
    @chjomochjomo5756 Год назад +1

    Hierzu ein kleiner Hinweis zu einem YT-Video von Prof. Dr. Weitz: Man kann JEDE Folge mit 42 beantworten UND dazu immer eine Polynomfolge findem :-). Das Video heißt: "Wie man JEDEN Intelligenztest besteht: Das Geheimnis der Zahl 42".

  • @powervegan3403
    @powervegan3403 Год назад

    5+4=9, 4*4=16
    16+12=28, 12*4=48
    48+32=80, 32*4= 128

  • @KolnFriedChicken
    @KolnFriedChicken Год назад

    Lustig, beim dritten bin auch auf 128 gekommen aber anders.
    Die Differenz von 5 und 9 ist 4, 4*4 ist 16. Die Differenz von 9 und 16 ist 7, 7*4 ist 28... Die Differenz von 48 und 80 ist 32 und 32*4 gleich 128.

  • @titiminator
    @titiminator 10 месяцев назад +1

    Man sollte aber vielleicht auch erwähnen, das diese Tests eigentlich mathematisch Humbug sind: ruclips.net/video/g_id5N2yrlM/видео.html

  • @horstwerner4939
    @horstwerner4939 Год назад

    Kennst du auch diese Folge: 6,28,496,8128,...
    Wie geht die weiter????????????

  • @HiSven
    @HiSven Год назад

    So gehts auch:
    ruclips.net/video/g_id5N2yrlM/видео.html

  • @saschaschwiewagner4007
    @saschaschwiewagner4007 Год назад +2

    Die Antwort ist immer 42 😁

  • @popogast
    @popogast Год назад +1

    Sollte man hier nicht konsequent den Begriff "Zahlenfolge" verwenden.

  • @philphil1781
    @philphil1781 Год назад

    erste war am schwierigsten :D

  • @griseldis-yi6ox
    @griseldis-yi6ox 5 месяцев назад +1

    Bin krachend gescheitert🤣🤣🤪

  • @kurumiNGNL
    @kurumiNGNL Год назад +1

    Bei der letzten geht auch 129

  • @Aktenzeichen_007
    @Aktenzeichen_007 Год назад

    sehr schön, aber ist mir alles zu "hoch", so was haben wir früher nicht gelernt.

    • @btx47
      @btx47 Год назад +1

      dafür gibts doch das video

  • @townstar1
    @townstar1 Год назад

    89 ist die Zahl

  • @miroburger8869
    @miroburger8869 Год назад

    Einfach Fibonacci Folge übersehen